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This review covers developments in digital simulations of electroanalytical experiments,
since 1996. Over the period of time considered, a number of new techniques has been
applied. Among them are: the method of lines approach using the differential algebraic
equations formulation, extrapolation and Rosenbrock time integrators, multipoint and
high-order compact spatial discretisations, finite-element-like methods, adaptive techni-
ques and sensitivity analysis. More simulation software is now also available.
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1. Introduction

In connection with electroanalytical kinetic experiments [1], digital simulation [2,3]
plays an increasing role. This review covers developments in the field after 1996. That is,
it covers advances that were made after reviews published at about that time [4,5]. There
have also been, at roughly the same time, more specific survey-type articles reviewing,
for example, the “fast implicit finite difference” (FIFD)"" method [6] and on theory (and
some simulation) at ultramicroelectrodes (UMEs) [7,8]. Recently, a chapter on digital
simulation has also appeared in the Encyclopaedia of Electrochemistry [9] and a brief
review section is seen in [10], as an introduction to the available methods. It will be seen
that a considerable number of new contributions has been published since these works
appeared.

* Dedicated to Prof. Dr. Z. Galus on the occasion of his 70th birthday.
*% A
Abbreviations used:

ADI — alternating direction implicit; AE — algebraic equation; BDF — backward differentiation formula;
BI — backward implicit; CN — Crank-Nicolson; DAE — differential-algebraic equation; ECL — electro-
chemical luminescence; FD — finite difference; FEM — finite element method; FIFD — fast implicit finite
difference; FIRM — fully implicit Richtmyer modification; HOC — high order compact; MOL — method of
lines; NUMOL - numerical method of lines; ODE — ordinary differential equation; PDE — partial
differential equation; RK — Runge-Kutta (method); SA — sensitivity analysis; SAGE — single alternating
group explicit; SECM — scanning electrochemical microscope; UME — ultramicroelectrode.
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The structure of the review is as follows. In section 2 we comment on the changing
role and position of digital simulation in electroanalytical chemistry. In sections 3—5 we
describe new developments related to the spatial and temporal discretisations used in
electrochemical simulations. Section 6 lists various new developments of the simulation
methodology, from the point of view of specific classes of problems or application types.
Section 7 mentions miscellaneous new numerical methods applied to electroanalytical
chemistry, but not belonging to the mainstream of simulation methods. Finally, section 8
describes those new developments that are aimed towards automating the various
simulation practices. This includes a discussion of new simulation software.

A decision which papers to cite in a review is always somewhat subjective. For
example, in the present case it is difficult to draw a clear dividing line between
electrochemical kinetics and, let us say, electrochemical engineering, or other sub-fields of
electrochemistry that require simulation. We apologise to all those authors whose
important works may have been omitted due to our decisions.

2. Digital Simulation as a Part of Computational Electrochemistry

For several decades, digital simulation in electroanalytical chemistry has functioned
as amodest addition to the theory of steady-state and transient electrochemical methods.
With the overall changes in the methodology of natural sciences, caused by the
increasing availability, power, and application scope of digital computers, the role and
importance of digital simulation is now changing. It is justified to notice and consciously
stimulate the emergence of a new branch of electrochemistry that might best be called
Computational Electrochemistry. A recent paper by Bieniasz [11] has discussed in much
detail the rationale for, tentative definition of, and research objectives for Computational
Electrochemistry. It has been argued that Computational Electrochemistry should use
computer experiments as an operational method of studying electrochemical pheno-
mena, and that it should be complementary and non-reducible to the traditional fields of
Experimental Electrochemistry (which uses physical experiments) and Theoretical
Electrochemistry (which uses mathematical models and theories). One of the basic
activities of Computational Electrochemistry should be the conception and development
of Problem Solving Environments for electrochemistry, i.e. highly automated advanced
software systems serving for a wide spectrum of computer-aided research activities in
electrochemistry. Within Computational Electrochemistry, digital simulation gains a
position of both one of the central subjects of study, and a basic research method, together
with computer-based electrochemical data storage and analysis, development of compu-
terised electrochemical instrumentation, and other possible uses of computers and
computational methods. In order to achieve the ambitious goals posed for Computational
Electrochemistry [11], the simulation methodology needs to be advanced to a much
higher degree than ever in the past, including improvements in accuracy, efficiency, and
automatism. Noticeable progress leading in this direction is documented below.



Recent developments in digital simulation of electroanalytical experiments 1197

3. The Method of Lines and the Differential-Algebraic Equation Approach

Many simulation methods can be conveniently classified as examples of the so-called
Method of Lines (MOL). A standard text on MOL is by Schiesser [12], who calls it
NUMOL. The most common MOL approach (the longitudinal one) consists of what is
called semidiscretisation of the initial value problems, that is, discretisation only of the
spatial derivatives, leaving the time derivatives to be dealt with later. Thus, one can
combine various spatial discretisations with various discrete time integrators. In the
simplest case, the spatial discretisation results in a set of ordinary differential equations
(ODEs), that can then be solved by any of a number of methods for these. Such a method
was used, and called explicitly MOL, by Lemos and co-workers [13], who used explicit
Runge-Kutta (RK) time integration. However, as the boundary conditions are often
algebraic equations (AEs), a more general approach is to consider the spatially disc-
retised problem as a set of differential-algebraic equations (DAEs), for which a number
of time integrators is available, too. The DAE approach has been advocated by Bieniasz
[14-16], partly because, apart from the boundary conditions, additional AEs or DAEs
(associated for example with adsorption processes) may accompany the partial differen-
tial equations (PDEs) of electrochemical kinetics, so that the DAE approach allows one
to consider such systems consistently. For those who do not wish to program their own
solver, the formulation of the given DAE system, followed by solving with a general
solver such as DASSL [17], might be the method of choice, as has indeed been used by
Lasia and Grégoire [18] and Zhang and Cheh [19]. DASSL has also been included in the
ELSIM 3.0 program (see section 8.3).

4. Developments in Finite Difference Discretisations

Considerable effort has been expended to investigate new finite difference (FD)
discretisations, not previously implemented in electrochemical digital simulations.
These can dramatically increase the efficiency of simulations. Also, improvements of
formerly used FD discretisations have been reported.

4.1 Some notation. In what follows, various symbols will be used, and they are here
defined. Time is denoted as ¢, space coordinates as x and y. The symbol A, defined by
A= D dt/h*, where D is a diffusion coefficient, 01 is a time step size and / is the spatial
mesh spacing, will be used. It is sometimes called the dimensionless diffusion coef-
ficient, and it impinges seriously on the stability of a given method.

4.2 Time integrators. Following the MOL philosophy, outlined in section 3, we first
discuss developments in discrete time integration, postponing the spatial discretisations
until sections 4.3 and 5.

4.2.1 Crank-Nicolson oscillations controlled. The popular Crank-Nicolson method
(CN) [20] can be viewed as an MOL combining a conventional second-order accurate
FD discretisation of the second spatial derivatives with the trapezium rule integration in
time. The method is attractive owing to the second order accuracy of the trapezium rule
integrator. However, its provable absolute stability against all A values (except in some
extreme conditions [21-23]) is to some extent irrelevant in practice, because for potential
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step simulations, that is, when a sharp transient is applied at zero time, CN responds with
oscillations. This is because mathematically, the trapezium rule is only A-stable but not
L-stable [24]. The greater a value A has, the worse these oscillations become; this is
unfortunate because large A values are desirable to ensure a satisfactory resolution of
local spatial variations of the concentrations. The oscillations (almost) always decay, but
if at the end of a given simulation, there still are oscillations of appreciable magnitude,
then CN is unsuitable as such.

There are, however, ways to largely eliminate the oscillations, and the problem has
recently been studied [25,302]. There are several options. One of them is to divide the
first time steps into a number of sub-steps, either equally or in an expanding sequence.
Exponentially expanding sub-intervals have been suggested and used [26,27]; Svir and
co-workers routinely use a number of doubling intervals for their UME simulations
[28,29], which was later found not to be the best method [25]. The method of Pearson
[30], which divides the first interval into a number of equal intervals, was found very
effective and was first used in electrochemistry by Fang and Yen [31]. The number of
subintervals should ideally be such that the sub-A is about unity [25]. For large A, this can
mean many substeps, and in such cases, exponentially expanding substeps can reduce the
number; however, the expansion factor should not be too great, see [25] for details of this
rather complicated situation.

There is another, much simpler and very effective method. If one begins the
simulation with a small number (1-4) of steps by means of the backward implicit (BI)
method of Laasonen [32] before commencing with CN, it is found that the oscillations
are largely damped, because CN is presented with a less sharp transient than that which
exists at zero time, and BI does not cause oscillations because it makes use of the implicit
Euler time integrator, which is L-stable [24]. This was devised by Rannacher [33] and
has been studied since (see [25] for further literature). In [25], a single step was favoured
but up to 4, as suggested by Rannacher and co-workers, can be useful. The replacement
of CN by BI at the first time steps does compromise the actual accuracy to some extent,
but that might be acceptable, given the convenience of CN. The method was found
particularly effective for UME simulations using CN or the alternating direction implicit
(ADI) method [34], used by Svir and co-workers [28]. The traditional ADI method, as
proposed by Peaceman and Rachford (see a thorough discussion of several alternating
direction schemes in Lapidus and Pinder [35]) behaves much like CN, showing oscil-
lations unless these are suppressed. A single BI step often suffices to suppress these in
UME simulations.

The disadvantage of this technique is that a given program must have both a BI
routine as well as a CN routine or, in the case of subdivision of the first step, a separate
section for that first step. This can be weighed up against the inconveniences of BDF,
extrapolation or Rosenbrock (see the next sections), which require extra data storage.

4.2.2 New findings on BDF. The MOL consisting of the combination of the second
order accurate conventional FD space discretisation with the backward differentiation
formulae (BDF) for time integration, was brought into electrochemistry in 1994 [36],
under the name fully implicit Richtmyer modification (FIRM), because Richtmyer [37]
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suggested the three-point BDF variant for use in the solution of PDEs. The method thus
does not belong to the time period of this review. What does belong, however, is a finding
about the properties of the simple start-up used by Mocak et al. [36]. With BDF, there is
the problem of the non-existence of values before time zero. Mocak et al. initially simply
setall “past” values to the initial values, and then step forward. This clearly introduces an
error. A more rational start is normally used in numerical studies outside electro-
chemistry, where one begins with BI (Laasonen method [32]), then uses three points,
then four, efc., until the required number of points in time exist, continuing from there
with that number. It is known that this starting protocol reduces the solution’s accuracy
order with respect to the time step size, so that a better method might be desirable. There
have been experiments with high-order accurate starts, such as one that can be derived
from the simulation method of Kimble and White [38]. This was found inefficient for
PDEs [39]. This would probably also apply to the recent new method of Wu and White
[40], which the authors suggest as a BDF start. An interesting feature emerged, however
[39]. Mocaket al. [36] used, without any justification, a time correction at each step. That
is, after n steps of 0z, they assign the value of (n — 0.5)d¢ to the time, rather than the nor-
mal value nd¢. This is reminiscent of Feldberg’s original subtraction of half a time step,
also without justification at the time [2]; the only justification in both cases was that it
seemed to work rather well. Britz examined the problem [41] and found that there
appeared to be a time shift inherent in BDF with this simple start-up, the shift converging
with high accuracy to—0.50+¢. Later it was found that there is a mathematical reason for
this phenomenon. It was shown [42,43] that the use of the simple start indeed introduces
a time shift that converges in this manner. Therefore, the Feldbergian correction is fully
justified in this case. It turns out [39] that rather accurate solutions are achieved using the
simple start with the correction, and it appears that the optimum BDF variant might be
the second-order three-point one, with the simple start and correction. One reason for not
using higher-order BDF variants is that the rational start-up limits the accuracy order of
the subsequent BDF operation, so not much is gained from higher order BDF applied
subsequently. As well, at about five points, BDF begins to show oscillations [36,44],
which are to be avoided. This is because only the two-point BDF variant (corresponding
to the implicit Euler time integrator [24] is L-stable, and the method becomes entirely
unstable for more than seven points [24].

4.2.3 Extrapolation. The various techniques of extrapolation date back to Richard-
son [45,46]. Lawson, Morris and Gourlay [47,48] developed a PDE method, in which
extrapolation in time is applied to the BI method [32]. In other words, an extrapolated
implicit Euler time integrator is combined with a second order accurate conventional FD
spatial discretisation. This method has been introduced to electrochemistry by Strutwolf
and co-workers [49,50].

The BI (Laasonen) method [32] has some attractive features, chief among them its
unconditional numerical stability and the way it converges smoothly without any
oscillations to the true solution with increasing numbers of time steps, that is, it is
L-stable [24]. Contrary to the CN method [20], as the factor A increases, BI performs
better, whereas CN becomes more and more oscillatory (although see section 4.2.1).
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The drawback of BI, however, is that it is first-order accurate with respect to ¢, which
results in long computation times for a given target accuracy. Extrapolation improves the
order, and thus renders simulations more efficient.

To explain this, let the result of taking a single BI step be ], and the result of two
steps with half'the former step size be u,. Bl being a first-order method, we know that, to
a good approximation, the error inu; is only half that in ;. Therefore, the extrapolation
expression 2uy—u clearly eliminates the error — to a good approximation. The approxi-
mation lies in the fact that there are higher-order terms in the error, which are not
eliminated. But the remaining error is now second-order, which is an improvement.
Higher order schemes, using increasingly more complicated combinations and more
partial steps, exist [49,50] but the second-order variant might be the most reasonable, as
it matches the spatial accuracy of the BI method.

Extrapolation as described above, that is, based on BI, has all the convenient stability
and smooth convergence properties of Bl and a much improved accuracy. It is in
principle possible to extrapolate on the basis of other schemes than BI, such as the
explicit or CN methods; but this is not done.

Extrapolation, then, is an alternative to BDF. One drawback of extrapolation is that it
necessitates a larger number of computations for a single step forward, and intermediate
concentration values that must be stored, perhaps together with coefficient matrices,
whereas BDF only requires a single coefficient matrix in addition to past concentrations
(these matrices are sparse but become banded as one increases the number of points used
in the spatial discretisation, or with two-dimensional systems, and then require sparse
matrix techniques for solution). For problems where a single step entails the use of a
sparse matrix that has been LU-decomposed once and for all, this means that a number of
such decomposed matrices must be stored in the case of extrapolation, which can be
inconvenient. In the case of second-order extrapolation, there are only two such matrices,
which is not a great problem. Extrapolation does not have the start-up problem of BDF,
previously mentioned. BDF has the drawback of being limited to second order accuracy
with a practical start, whereas extrapolation can be driven to higher orders with no such
limitations. The choice will rest on individual preference.

4.2.4 Rosenbrock. Bieniasz [ 15] suggested the use of Rosenbrock methods [51] for
time integration. This group of time integration schemes has a lot to offer, such as
increased error order (hence, better accuracy), and the ability to handle non-linear PDEs
and boundary conditions without the need for iteration. Briefly, Rosenbrock schemes are
all implicit RK integration methods. They are a good alternative to BDF or extrapolation
methods, often used to solve ODEs or DAEs within the MOL approach (see section 3).
As with explicit RK methods, one computes a set of changes and combines them using
weighting coefficients. With explicit RK, the changes are evaluated one (set) after the
other, whereas with implicit RK, they must normally be evaluated together as a linear
system. With Rosenbrock schemes, the equations have been arranged such that one is
able to evaluate the changes one (set) by one, even though this constitutes an implicit RK
scheme. The reader is referred to [15] for the implementation in electrochemistry. There
are second-order schemes for DAEs, for example ROS2 [52], but Bieniasz prefers the
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ROWDA3 scheme of Roche [53], later developed into a more convenient form by Lang
[54] because the method has third-order accuracy and proves particularly efficient (more
so than second order accurate extrapolation). Both these schemes have a smooth
response to transients, without oscillations. That is, they are L-stable. Similar to
extrapolation, Rosenbrock schemes are one-step schemes, so that they do not have
start-up problems and are well suited to rapid solution changes, typical of electro-
chemical kinetics. However, some of them (such as ROWDAS3) cannot be used at
temporal discontinuities in the boundary conditions, typical of step transients. The
method deserves more attention than it has received.

4.3 Space discretisations. We now move to discussing new FD spatial discreti-
sations that have been proposed for simulations since 1996.

4.3.1 Multi-point spatial discretisation. The seminal work of Kimble and White
[38], although itself being nontrivial to program for the solution of PDEs, and inefficient
as a start-up for BDF, did suggest that using more than the usual three points for the
approximation to the second spatial derivative might be of advantage. Also, it makes
little sense to use the higher-order time integration made possible by BDF, extrapolation
or Rosenbrock, without at the same time raising the order of the spatial discretisation.
Thus the use of five points (six at the edges, to keep the order at fourth) was syste-
matically examined, combined with various time integration techniques such as BDF
[55], extrapolation [56] and explicit RK [57]. These experiments showed that indeed, the
multipoint approach was useful. It was also clear that uniform spatial meshes have
limited use in electrochemistry, so the method was applied directly to arbitrarily spaced
spatial meshes [58], using direct discretisation rather than coordinate transformation
[58] (see section 4.3.3). In the work [ 58], it was concluded that an asymmetric four-point
second spatial derivative discretisation, coupled with a second-order time discretisation
such as extrapolation or BDF, might be ideal. The four-point approximation allows the
use of the Thomas algorithm [59], modified appropriately, and thus avoids the use of a
less efficient sparse matrix solver. This work goes on, recently having been applied to the
two-dimensional case of the UME [60], using direct discretisation on an unequally
spaced grid. This was seen to be better than discretisation on a conformally mapped grid
and equally spaced grid, at small time values.

4.3.2 Hermitian schemes. As an alternative to multipoint FD spatial discretisations,
high-order compact (HOC) schemes have been introduced into electrochemical simula-
tion. Their essence is in every case, that one draws a higher order out of a few points than
isnormally the case. These schemes have a long history in the numerical literature, where
they are mostly called HOC, or in some cases Hermitian. The latter term was used in the
English translation of the book by Collatz [61], referring to its origin in Hermite
interpolation [62]. The term has come to mean an approximation in general, that not only
uses function values at grid points, but also derivative values. As will be seen below, the
first of these to be applied to electrochemistry is the Numerov method for the second
spatial derivative, followed by a Hermitian method for the flux approximation, a first
spatial derivative. Outside electrochemistry, articles on HOC schemes are numerous,
recent examples being [63,64]; few papers refer explicitly to the Hermitian method [65].
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4.3.2.1 The Numerov method. Numerov (using the French transliteration of his
name, Noumerov) wrote a paper in 1924 [66] describing a numerical correction by which
a second derivative approximation, using only three points, which normally, for equally
spaced spatial grids, has an 0(42) error, can be brought to have an 0(h%) error. This was
adapted for use in the solution of parabolic PDEs by Douglas (mentioned in the
monograph of Smith [67]) and was recently fully explained and adapted to electro-
chemical simulations by Bieniasz [68,69,303] (to which the reader is referred for
details). The method can be highly efficient, especially if coupled to a matching
high-order time integrator such as BDF, extrapolation or Rosenbrock.

4.3.2.2 A better current approximation. Bieniasz has also used a Hermitian
approach [70] to achieve a high-order accurate FD formula for the concentration gradient
approximation at the electrode. The gradient is often related to the electric current. The
usual n-point expressions [71] have truncation errors that can be expanded in Taylor
series. By using the information inherent in the PDE to be solved, some of these terms
can be corrected for (perhaps approximately), and the result is a HOC approximation
using only a few points. In particular, this is very useful for improving two-point
approximations, as up to third-order accuracy can be achieved, using two points. The
method is thus far limited to uniform space grids with the exception of the simplest,
two-point HOC approximation. Also, the governing PDE cannot involve first spatial
derivatives. The reader is referred to [70] for a detailed explanation of how this works.

4.3.3 Non-uniform space grids — direct discretisation or transformation? It has
long been considered that in cases where an unequally spaced spatial grid is of advantage
(for example in the cases of thin reaction layers or hydrodynamic layers at the electrode),
it is better to transform the grid to another space, divided into equally spaced intervals,
that correspond to the original uneven grid. In the numerical literature, the work of
Kalnay de Rivas [72] is often cited to support this position. This has also been accepted
until recently by electrochemists, who often transform space for this reason. The
Feldberg approach of exponentially expanding boxes [73] was applied to a set of points
in the form of a transformation of x- into y-space, with discretisation taking place on the
y-space grid and transformed transport equation. Rudolph [74], however, showed that
direct FD discretisation on an unequally (exponentially expanding) grid is in fact
superior to using transformation. This was partially contested by Bieniasz [75], pointing
out that the discretisation used by Rudolph in the transformed space could easily be
modified to achieve better accuracy; Rudolph [76] then also independently derived a
similar improvement. Comparisons in two-dimensional systems such as the UME
suggest that the superiority of one approach over the other may depend on the time-scale
to be simulated over, that is, at short electrolysis times, the direct approach is better, the
conformal map approach taking over at longer times [60]. Gavaghan [77,78] experi-
mented with the direct approach with UMEs and found poor performance. This is due to
the edge effect on the UME, and extreme expansions must be used here and the use of
more points for the second space derivative approximation is indicated [60].

There are some subtleties to be noted in this context: Rudolph favours the Feldberg
box method which, he argues, is a finite volume rather than a FD method. He emphasises
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the flux-conservative property of the box method, which may not be shared by some of
the FD variants on the transformed spatial grids. This may be one of the reasons for the
difficulties observed.

Direct discretisation also motivates the search for efficient means of obtaining the
coefficients for the discretisation formulae. Explicit formulae for arbitrary spacing
become quite complicated [58] with increasing numbers of points included in a given
approximation. A few formulae, both for first and second derivatives, are available from
other authors [74,77,79]. For this reason, an algorithm and subroutine were devised [80],
that returns a derivative value as well as the coefficients to generate it. Recently, some
simpler explicit formulae were shown for the special (and most used) case of an
exponentially expanding grid [81]. An efficient recursive general algorithm has also
been known for some time [82].

4.4 Numerical stability studies. Assessment of the numerical stability of the
various simulation algorithms is an important, although often neglected problem. Work
on these issues is progressing.

Britz [83] analysed the stability of the Kimble and White [34] method, which
appeared puzzling. Essentially, it uses a five-point central first time derivative and, when
used in a marching fashion, this is known to be unstable [84], but they write all time steps
into one large linear system. Then, at the first few steps, asymmetric formulae must be
used, as also at the end, where for the very last step a BDF form is used. These few
asymmetric forms render the whole system stable, as was shown.

Britz [44] confirmed the stability of BDF [36] for electrochemical PDEs, for up to
the seven-point formula. At about five points, oscillations are seen, becoming worse at
six and seven points.

The use of multipoint spatial derivatives (section 4.3.1) can change the stability
conditions of a given method. For example, with the explicit method, the upper limit for A
when using three-point approximations is 0.5 for pure diffusion, but it decreases to 0.375
for five-point approximations; a similar decrease was seen for the explicit RK method
[57], although the actual limiting A values depend on the number of RK stages used (the
more, the larger the A limit). With BDF, however, stability is retained under the same
conditions, and also for extrapolation, as shown by Britz and Strutwolf [55,56].

5. Developments in Finite-Element-like Methods

Apart from the FD spatial discretisations, discussed above, there is a group of
techniques such as the finite element method (FEM) [85] and other related methods, that
suggest themselves to simulation where the geometry dictates fine space grids in some
regions and coarser grids in others. With FEM, one places node points where one wants
them, and solves for the entire region in a variety of ways. Stevens ef al. wrote a general
description of the application of FEM to a variety of electrochemical simulations [86].
FEM has been applied to UME simulations [8§7-90], to scanning electrochemical
microscope (SECM) studies [91], convective systems [92,93], in particular channel flow
systems [93—-95] and the wall tube system (a wall jet impinging on a small electrode)
[96-98], tubular flow [99,100], as well as to current distribution studies (Laplace
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equation, steady state) [101]. Gooch et al. [102] simulated channel flow systems with
modulated flow, using FEM, and Gooch et al. [103] simulated liquid/liquid transfer
(without migration effects). Some authors [94,104] use available FEM solvers. FEM has
also been developed to an adaptive method (see below, section 8.1). For steady state
simulations, the boundary integral element method [105,106] can be even better,
requiring only node points around the boundary, and has been used recently for SECM
studies [107—111], for current distribution computation [112], for steady state UME
simulations [113,114], a 3D study of a distorted UME [106] and even for a time-
marching UME simulation [115].

A related method is the finite analytical method in which local analytical solutions
are sought. This method is due to Chen [116], and has been applied by Jin et al. [117], to
interdigitated microband arrays [118], the microring [119], and the UME [120,121].

6. Developments in Solving Specific Classes of Problems

A large group of simulation studies has been devoted more to solving specific
problems or classes of problems, than to developing new discretisations or analysing old
ones. Such studies are equally important for the overall progress in the simulation
methodology, so that we list them in this section.

6.1 Multidimensional systems. One-dimensional systems have always been a
convenient simplification (albeit quite applicable in many cases) but modern UMEs have
forced us to go to more dimensions, mostly two. The most used is the flat disk UME,
flush with an insulating plane, and simulation efforts are concentrated here; but other
geometries are used and simulations have been carried out. Some examples of simula-
tions performed on related electrode types are recessed and protruding UMEs [122—-124]
sphere-cap [125] conical [126], a microring electrode [119] which can be thought of as a
special case of a microband; UME arrays [127]. Microband electrodes continue in use
and simulation, with and without convection [118,128-139]. The work [133] dealt with
chronopotentiometry at a microband electrode, which presents an interesting difficulty
for simulation, owing to a non-local boundary condition preventing the use of the
popular ADI methods. There has been recent interest in dual microband simulation
[137-139] and interdigitated band arrays [118,134,136].

Microband electrodes in convective systems were simulated [123,130,140-153],
mostly in the context of channel flow systems. Two interesting cases were that of Gooch
et al.[102], who simulated a parallel dual channel system, separated by a semipermeable
membrane and Fulian et al. [95], who allowed two channels to join in a confluence flow,
the reaction producing a species that was detected by a microband electrode. The SECM
is seeing increasing use, and simulations have been done [91,154-165].

In microdisk simulations, the most popular approach is to use one of several
conformal maps to transform the cylindrical coordinates such that in effect, small spatial
intervals are obtained at the disk edge, where there is a very large current density. This
problem was already realised by Crank and Furzeland in 1977 [166], and Gavaghan
[167] writes that this discontinuity renders all simulation results accurate to 0(4 ).
Gavaghan concluded that, for this reason, whether one uses trapezium or Simpson rule
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integration of the current density over the electrode surface is not important, as the
concentration values obtained from a given simulation are not highly accurate. He then
examined the use of direct discretisation on an unequally spaced grid [77,78,168], and
used spacings near the disk edge as small as 8x107® (the disk radius having been
normalised to unity). This was recently compared with simulation on a conformally
mapped grid [60], using higher-order accurate approximations to space derivatives, and
it was found that at small times, the direct approach is better, while the transformed grid is
better at longer times. This is somewhat surprising, given the Rudolph finding in one
dimension [74], suggesting that direct discretisation on a non-uniform grid is best, but
note the critique [75] and further discussion in section 4.3.3. The same study [60]
concluded that an asymmetric four-point discretisation on the uneven grid is about
optimal, giving second-order accurate derivative approximations. Gavaghan used three-
point formulae, considering them second-order accurate, while in fact they are first-order
accurate. However, in a private communication with one of us (DB) he explained that the
constants in the error polynomial are such that the behaviour is more like second order,
even though when one measures the order, it comes out as first-order. Nevertheless, a
four-point approximation might be preferred, not being difficult to apply [60]. Amatore
and Svir [169] tried a two-domain approach, using uniform spatial grids, but more
closely spaced in a region close to the disk. This did seem to give rather good results.

Amatore et al. [170] studied the case of a microring electrode, varying the ratio of
ring width to ring diameter. A “thick” ring (width comparable with diameter) was
observed to behave much like a disk, while a “thin” ring behaved much like a microband.

Further developments for multidimensional systems are associated with the use of
adaptive methods, see section 8.1.

All the work referred to above uses two-dimensional discretisation, which leads to
sparse equation systems. This implies a search for an efficient sparse solver. One option
is to use direct sparse solvers. Thus, for example, Y12M [171], available at the netlib site
[172], has been used in [39,133], whereas Strutwolf and Britz used MA28 [173],
available at the Harwell site [174]. The brute force approach, simply solving for the
whole system and ignoring the zero elements [27], although it turned out not too
demanding of computing time, is thus superseded. Other approaches to overcoming the
banded nature of these system are the iterative methods, such as the Krylov methods,
used by Alden et al. [175] and Welford et al. [176]. Alden et al. [177] and Bidwell et al.
[147,148] also tried the strongly implicit method [178] and the multigrid method
[179,180], comparing it with the Krylov methods, which were found best.

Despite the general character of the sparse matrix methods of solution, many authors
still use splitting methods such as the ADI method [34] or hopscotch [181,182]. These
both have the advantage of allowing either tridiagonal systems (ADI) or an explicit
solution (hopscotch). However, it can be argued that both have rather severe disad-
vantages. ADI behaves much like the CN method, that is, it responds with oscillations to
sharp initial transients (cf. section 4.2.1). Such oscillations are seen in Svir et al. [29].
Peaceman and Rachford [34] used small initial steps, possibly for this reason.
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Hopscotch, too, is known to cause some initial oscillations under the same condi-
tions [183], and it has the additional drawback of “propagational inadequacy” [184],
which prevents the use of large time steps, the very goal in the use of stable techniques.
Nevertheless, it seems that the attractions of tridiagonal systems outweigh the drawbacks
for many workers, and ADI has been used for various 2D systems in the period covered
[10,28,29,125,127,129,138,139,159-162,185-192], particularly in SECM simulations
[154-157,159,163—165]. Hopscotch was also used, though not as often[131,169,193].

Some three-dimensional systems have been simulated. Myland and Oldham [304]
simulated a hollow tube cell using BI (Laasonen), Beriet et al. [8§9] an UME array and
Fulian et al. a distorted UME [194] the latter two groups using the FEM.

6.2 Migration. In previous books and reviews [2—11], the issues of simulating
electric migration in addition to diffusion (and convection) transport, have been largely
omitted, despite the importance and frequently practised simulation of migration in
many areas of electrochemistry, bioelectrochemistry and technology (for example ionic
membranes, cells, electrolyte junctions, biological ionic channels, electrochemical
reactors, electrophoretic analysis, concrete technology, efc.). Mathematically analogous
simulations are also intensively performed in the area of charge transport in semicon-
ductors (drift-diffusion). Various simulation approaches to such problems have been
described in numerous publications that deserve a separate and comprehensive review,
substantially exceeding the volume acceptable for the present paper. For this reason, we
list here only selected developments, applicable to transient simulations of kinetic or
electroanalytical experiments performed in the absence or at low concentrations of the
supporting electrolyte. This choice is dictated by the increasing popularity of such
experiments, as was indicated by the available review [195]. Readers interested in the
numerical methods published within a wider context of migrational systems can be
guided by the partial review by Volgin and Davydov [196]. A fairly large number of
references to numerical methods is also provided in Bieniasz [197].

Jaworski et al. [198] described an FD method for the simulation of chronoam-
perometry at hemispherical microelectrodes (one-dimensional) in the presence of a very
low concentration of the supporting electrolyte. The solution of the highly non-linear
boundary conditions has been simplified by a partially analytical reformulation, so that
the method is not generally applicable. It was improved later by Hyk ez al. [199]. The
latter algorithm is based on the CN method and uses an exponentially expanding spatial
grid. The electroneutrality condition was not explicitly imposed in the calculations, but
the deviations from electroneutrality were controlled and considered to be negligible.

Feldberg et al. [200] discussed the susceptibility of their fully implicit simulation
algorithm to non-physical oscillations (lack of a property termed “spatial stability” by
the authors), when migration is present, and formulated criteria for avoiding such
oscillations. The emphasis was on transient simulations at the rotating disc electrode.

Pfabe and Shores [201] developed a Sinc-Galerkin method to solve the second order
boundary value problem with a non-local boundary condition, arising in the theory of
chronoamperometry in the presence of migration. The method is not likely to be very
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generally applicable to various kinetic models, but it has proven helpful in the mathe-
matical analysis of chronoamperometry.

Stevens et al. [202] outlined an explicit FD method similar to that used earlier by
Bond and Feldberg [203] in the presence of migration under local electroneutrality
conditions. The method was found to be accurate, but very small discrete time steps, and
consequently very large numbers of time levels are needed to ensure numerical stability.

Danet al. [204] presented a method for solving migration-convection-diffusion with
electroneutrality equations at the rotating disc electrode, which combines a finite volume
spatial discretisation with their multi-dimensional upwinding method for the convection
contribution, and trapezium rule time integration. The method applies to spatially one-
and two-dimensional models. It has been tested on linear potential sweep and impedance
simulations.

Myland and Oldham [205] have developed a convolution technique, to solve the
problem of cyclic voltammetry in the presence of migration, when ohmic potential drop
is included into boundary conditions. Convolution is often contrasted with digital
simulation, being classified as a semi-analytical technique, but we mention it here,
because the treatment of migration by this method necessitates some numerical inte-
gration.

A number of FD methods for solving migration-convection-diffusion + electro-
neutrality equations (including explicit, fully implicit and semi-implicit methods) has
been discussed and compared by Volginet al. [206]. The methods have been tested using
examples of galvanostatic and cyclic voltammetric experiments in binary, ternary and
quaternary electrolytes.

Bieniasz [197,207] has extended his patch-adaptive FD method (see section 8.1
below) to migrational problems, including Nernst-Planck-Poisson and Nernst-Planck-
electroneutrality equations. The method has been tested (among other examples) on
several models of potential step chronoamperometric and cyclic voltammetric experi-
ments. The method works in a largely automatic way, but tends to be computationally
rather expensive when migration is present. It has proven sufficiently robust to reveal
inaccuracies in the convolution calculations by Myland and Oldham [205] (and other
authors).

6.3 Other difficult problems. Orlik [208] used the explicit simulation method to
match experimental data, in order to measure kinetic constants, including uncom-
pensated resistance and double layer capacity effects, often neglected.

Orlik et al. [209-211] have applied the same method to the simulation of various
oscillatory electrochemical systems. Numerical artefacts were observed, which are
expected for this method, owing to the incompatibility of the stability conditions for the
PDE and a simultaneous ODE of double layer charging [ 14]. To avoid such artefacts, one
should use implicit methods, as was indeed demonstrated by Rudolph ef al. [212] and
Bieniasz [213].

Pedersen found (not using simulation) [214] that the often made assumption that
related species, for example a substance and its reduction product, have the same
diffusion coefficients, is doubtful. For a certain substance and its radical anion, there was
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aratio of 1.2 between the two diffusion coefficients, which should alert simulationists
to the danger of the equality assumption. The non-negligible effect of the difference
between diffusion coefficients has also been identified in migrational systems [215-218].
Not many simulation techniques are suited to sharp concentration changes away
from the electrode. Svir et al. [219,220], simulating electrochemical luminescence
(ECL) at an UME, simply used uniform spatial grids and the CN method, and were able
to include the (rather broad) hump in the solution. Later [221], they used exponentially
expanding space grids and BDF. This will only work if the hump is broad, and does not
move, as was the case also with Leventis and Gao [222], who used the explicit method.
Such humps or moving fronts generally require adaptive space grids, whereas analogous
highly localised temporal variations require adaptive time grids (see section 8.1).

7. Miscellaneous Numerical Methods

A number of numerical approaches has found application in electrochemical kine-
tics, not all of them being easily classified as digital simulation, some falling more
broadly under Computational Electrochemistry. Natarajan and Mohankumar [223]
improved the evaluation of the Randles-Sevéik function, and Mocak [224,225] obtained
some highly precise values, for all eight cases originally considered by Nicholson and
Shain [226]. These authors used infinite series summation algorithms. The integral
equation approach has been consistently taken by the Cope and Tallman group for the
modelling of microband electrode behaviour; this work continues [227], also elsewhere
[228-230]. Deng et al. [231] used a method called SAGE (single alternating group
explicit), which in fact is a two-step Saul’yev variant [232] that has previously been
found to behave rather like CN [233] in that it tends to oscillate. Also, Saul’yev can,
under certain conditions, become unstable [234], as indeed can CN [21].

Horno and co-workers continue with their network approach, in which diffusion and
a large variety of boundary conditions are modelled by a network of electrical elements
(resistors, capacitors, current sources and sinks), to be solved by existing software for
such networks [235-244]. One suspects that the work of expressing the transport
equations in these terms is roughly equal to that of simply simulating them directly.
Much of their work was devoted to simulating migration-diffusion problems in mem-
branes and thin layer cells [236,239-243], rather than in classical electroanalytical
experiments considered in section 6.2.

Rajendran [245,246] continues his work with Padé approximants to solutions of
electrochemical transport problems; this might be called mathematical, rather than
numerical, modelling.

Nagy et al. applied the random walk technique to diffusion [247,248]. While this has
the attraction of mimicking diffusion as the stochastic process it is, results are rather
rough and the simulations time-consuming.

8. Towards Automatic Simulations

A difficult task for computational electrochemists, still awaiting accomplishment, is
the design of fully automatic simulation (as well as data analysis) methods, and the
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creation of Problem Solving Environments for electrochemical kinetics, in agreement
with the emerging paradigm of Computational Electrochemistry (cf. section 1). Efforts
directed specifically towards this goal are listed in this section.

8.1 Adaptive grid methods. Automatic simulation methods should be capable of
providing numerical solutions having a prescribed accuracy, without any need for
intervention or simulation control by the electrochemist, and without any restriction on
the physically justified values of model parameters. In numerical mathematics such
methods are called adaptive grid methods, because they are based on the idea of
dynamically adapting the spatial and temporal discrete grids used to the evolving
features or local structures of the solutions obtained, without any a priori knowledge of
their location or duration. Compared to other branches of natural sciences, such
advanced methods are merely beginning to be used in electrochemistry.

In a continuing series of papers, Bieniasz [16,197,207,213,249-256] has pursued
his efforts to design an adaptive method most suitable for electrochemical kinetic
models in one-dimensional space geometry. The formerly considered moving grid
method [79,257-259] has been replaced by a patch-adaptive FD strategy, in which a
hierarchy of locally refined spatial grid patches is automatically constructed at every
time level, to resolve spatial details of the solutions with a prescribed accuracy. The use
ofthe ROWDA3 and extrapolation time integrators (see section 4.2) allows one easily to
control time steps as well, by appropriately adjusting them to reduce time error estimates
provided by the integrators. This strategy, described in [16], was initially applied to
provide largely automatic solutions to kinetic models defined over single space intervals,
and characterised by difficult-to-solve narrow solution features at the boundaries, such
as reaction layers, hydrodynamic layers, and diffusion layers associated with discon-
tinuous boundary conditions [249]. Later it was successfully applied to resolve thin
moving homogeneous reaction fronts [250] and moving fronts caused by concen-
tration-dependent diffusion coefficients in models of the redox switching of conducting
polymers [251]. The advantage of time step adaptation has been demonstrated using an
example of narrow current spikes in the model of linear potential sweep voltammetry for
the EE-DISP mechanism [252]. Subsequently, the method was extended [253] onto
models involving simultaneously distributed and localised (e.g. adsorbed) species [213],
models defined over multiple space intervals, typical e.g. for amalgam electrodes,
liquid/liquid systems or electrochemical biosensors [254], and models of moving fronts
typical of the pattern formation at electrodes [255,256]. This necessitated a generali-
sation of the classical Thomas algorithm [59] used by the method, onto quasi-block-
tridiagonal linear algebraic linear equation systems arising from the latter three kinds of
kinetic models. The generalisation has been described in [260].

Finally, the strategy has been extended onto models involving electric migration
ionic transport [197,207] (see also section 6.2). In this way, the performance of the
patch-adaptive method has been comprehensively tested on practically all kinds of
difficulties for simulation, occurring in one-dimensional models of electrochemical
kinetics. The performance is generally quite satisfactory, but inefficiencies and error
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control imperfections observed in single examples indicate that further development and
improvement of the method is still required.

Nann and Heinze [261,262] introduced a different approach to adaptive electro-
chemical simulations based on the FEM (section 5). The validity of the method (devised
for two-dimensional simulations) has been demonstrated on a few rather simple example
models of steady-state experiments, potential-step chronoamperometry, cyclic voltam-
metry at UMEs, and SECM [262], assuming exclusively distributed species.

Harriman et al. [135,263-267] have presented another adaptive FEM for two-di-
mensional simulations with distributed species, using a sophisticated theory of FEM
error estimators. The method has been initially applied to steady-state experiments at
UME:s [135,263-266] but later extended to transient experiments for relatively uncom-
plicated reaction mechanisms [267].

Yet another adaptive FEM, thus far restricted to steady-state two-dimensional
simulations, has been recently announced by Abercrombie and Denuault [88]. The
method is argued to be simpler but more efficient than that of Harriman et al.

An important achievement of Refs. [88,135,261-267] is the demonstration of the
power of adaptive FEMs in dealing effectively with the spatial edge effects that are a
nightmare of conventional, fixed-grid two-dimensional simulations (cf. section 6.1). The
methods are also well suited to simulations on arbitrarily shaped space domains.
However, no evidence has yet been provided that these methods are capable of automa-
tically resolving other, even more challenging difficulties, such as extremely thin
boundary layers and moving fronts characteristic of electrochemical kinetics.

A commercial adaptive grid program PDEase2 has also been used by Shao and
Mirkin [268] to simulate SECM, but without discussing the method. It is mentioned
again by Mirkin [269].

8.2 Simulation and sensitivity analysis. One of the crucial questions posed in the
modelling studies of electroanalytical experiments, is: what is the effect of various model
parameters (reaction rate constants, diffusion coefficients, formal potentials, charac-
teristic dimensions of the cells, efc.) on the results of the experiments? From the
mathematical point of view, answering this question requires so-called sensitivity
analysis (SA). Until recently, formal SA methods have been used on a large scale in
certain areas of chemical kinetics [270,271], but have been relatively uncommon in
electrochemistry, with the exception of the SA of electric circuits used in the electro-
chemical impedance studies, and limited applications in electrochemical engineering.
Bieniasz et al. [272-274] have suggested the more routine use of the formal SA methods
for the modelling of large amplitude transient methods. They have proposed using digital
simulation for calculating the so-called local sensitivity coefficients, in addition to the
usually simulated concentrations of the chemical species. The sensitivity coefficients
represent derivatives of the concentrations with respect to the model parameters, and can
be obtained by solving appropriately modified kinetic model equations. Such a direct
derivation of the sensitivity coefficients from the model equations can be compu-
tationally less expensive than the indirect deduction of the sensitivity information by
means of multiple simulation runs with various parameter combinations. It has been



Recent developments in digital simulation of electroanalytical experiments 1211

demonstrated that the simulated sensitivity coefficients can be used to gain more insight
into the behaviour of the kinetic models [272], for performing the model expansion or
reduction [273], and for quantifying the statistical error/uncertainty propagation in
simulation and in non-linear least-squares parameter estimation from large amplitude
transients [274]. In this way, SA not only expands the application scope of conventional
digital simulation, but also becomes a rigorous tool for coordinating the simulation
practices, opening perspectives for more automated modelling and simulation activities
of the future.

8.3 Simulation software. Speiser [4] has reviewed and compared a number of
general simulation programs, available before about 1996. References to some other
earlier known programs have also been provided in Bieniasz [11]. We therefore focus
here exclusively on the software released after the discussion in Speiser [4]. The software
runs on personal computers or workstations.

The latest, third version of ELSIM has been published by Bieniasz in 1997 [275].
The program incorporates new capabilities allowing one to solve kinetic equations
associated with interfacial species. This refers both to equations entirely independent of
spatial coordinates, and to equations in one-dimensional space geometry. Hence, user-
defined controlled potential and controlled current transient experiments for reaction
mechanisms involving distributed and adsorbed species (either separately or simul-
taneously) can be simulated by ELSIM, under conditions of diffusion and convection-
diffusion transport. The program has been equipped with a specially developed reaction
compiler [276], allowing the users to automatically translate their reaction mechanisms
into corresponding systems of mathematical model equations. The equations can also be
modified or re-edited by the users, prior to the simulation. Single simulated transient
curves can be fitted to experimental transients. Despite having quite extended capabi-
lities (see [ 11] and references cited therein) and an interactive user interface, ELSIM 3.0
suffers from the limitations inherent in the MS DOS operational system, for which it has
been designed. An MS-Windows version is not yet available. The program is currently
freely obtainable from the author.

The commercial code DigiSim for Windows, elaborated by Rudolph and Feldberg,
and sold by BAS [277], has gained a noticeable popularity, and new versions have
appeared, all having interactive, graphical user interfaces. The program simulates mostly
cyclic voltammetry, for user-defined reaction mechanisms involving distributed species
only, assuming one-dimensional space geometry. The simulation method and other
algorithmic details have been described [6]. Although DigiSim is nominally limited to
cyclic voltammetry, it is possible to force it to approximate the potential jump experi-
ment by suitable adjustment of parameters, and Ketter ez al. [278] found a way to use this
program for calculating integrated ECL emission intensity. The simulation engine
cooperates with the BAS (and some other) experimental data collecting software, and
enables fitting of the simulated voltammograms to the experimental ones.

The commercial code POLAR by Huang [279] has been vigorously advertised in the
electrochemical discussion lists on the Internet. The program is declared to simulate
various types of voltammograms. We do not have experiences with using the latest
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versions of this program, and we do not know of any published descriptions of the
algorithms implemented in POLAR. However, a review of the program has appeared
[280].

Kaczmarski and Sanecki [281,282] have developed the ESTYM_PDE code for the
solution of and parameter estimation from coupled PDE/AE and PDE/DAE systems,
including several electrochemical kinetic models in one-dimensional space geometry.
The program uses spatial discretisation by orthogonal collocation, and temporal inte-
gration by Adams-Moulton or BDF methods. The program is written using the Delphi
Pascal compiler and has a graphical Windows user interface (unfortunately, in Polish
only). Data fitting options are available. Some information regarding the capabilities of
ESTYM_PDE and methods implemented in this program can be deduced from Refs.
[283-286]. The program is available from the author (K.K.).

Laouenan [287] released the VirtualCV program for simulating cyclic voltammetry
experiments. The program performs simulated experiments that can be useful for
teachers, students and researchers. The program can share input data with the older ESP
code by Nervi [288] and uses a C++ translation of Gosser’s simulation engine [289]. It is
available from simtel [287].

A cyclic voltammetric simulator for Windows 95 or higher, has been announced by
Vining et al. [290]. The program is intended as a tutorial, covering the fundamental
concepts of cyclic voltammetry, including reaction kinetics and diffusion.

In addition to the above efforts to design fairly general simulation programs, a
number of codes designed for specific models or problems has been presented in the
electrochemical literature or on the web. Biader Ceipidor et al. [291] have described an
EXCEL-based simulator for cyclic voltammetry and a CEC reaction mechanism.
Martinet et al. [292] have reported software for the simulation of cyclic voltammograms
for a two-step metal deposition with adsorption. These latter authors argued that
problems with adsorption could not be solved by previously available software. This
argument is not precise: as was already noted, ELSIM 3.0 has such capabilities. Ohtani
[293] provided a Java-based online simulator on the web, serving as a simulator of
quasi-reversible voltammetric responses of electrodes coated with electroactive mono-
layer films. The simulator uses the previously published theory [294]. Svir et al. [295]
have developed ECL-PACKAGE, especially designed for the simulation of ECL at
UMEs of various (one- and two-dimensional) geometries: sphere, microdisc, and
channel double microband, during non-steady-state electrolysis. The package uses
fixed-grid FD and FEMs with coordinate transformations. A graphical user interface is
provided. A commercial code PIRoDE has been released by ELSYCA [296]. The code is
designed for the simulation of transient experiments at the rotating disk electrode, under
conditions of migration-convection-diffusion transport (dilute solution model of ionic
transport). Intermediate adsorbed or deposited species can be handled. Options for
parameter optimisation are also available. Graphical user interface is provided. Some
information regarding the capabilities of PIRoDE and methods implemented in this
program are available in Refs. [204,297,298].
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Out of the above programs, only ELSIM has been specifically developed as a

Problem Solving Environment for electrochemical kinetics, although features charac-
teristic of such software systems are also found in other programs. The idea of building
Problem Solving Environments has been recently undertaken by Speiser and co-workers,
who started a long-term project called EChem++ [299]. They apply object-oriented
analysis and the C++ language, to code the overall electrochemical data generation,
analysis and interpretation processes in the form of an integrated software package. As
an open source project, EChem++ is intended to be applied, extended, improved and
tested freely by the electrochemical community. First building blocks of this package are
currently in preparation [300,301], assuming a Linux platform.
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